Lược sử thời gian (phần 17)

Nơi đăng và chia sẽ các Thông tin, tin tức về Ý tưởng và Sáng tạo trong lĩnh vực Khoa học - Công nghệ

Lược sử thời gian (phần 17)

Gửi bàigửi bởi Zelda » 16 Tháng 7 2010, 14:21

Thuật ngữ lỗ đen còn rất mới. Nó được nhà khoa học người Mỹ John Wheeler đưa ra vào năm 1969 nhằm mô tả một cách hình tượng một ý tưởng bắt nguồn ít nhất khoảng 200 năm trước, vào thời mà còn có hai lý thuyết về ánh sáng: một lý thuyết được Newton ủng hộ cho rằng ánh sáng được tạo thành từ các hạt, còn lý thuyết kia cho rằng nó được tạo thành từ các sóng.

Chương 6: Lỗ đen

Thuật ngữ lỗ đen còn rất mới. Nó được nhà khoa học người Mỹ John Wheeler đưa ra vào năm 1969 nhằm mô tả một cách hình tượng một ý tưởng bắt nguồn ít nhất khoảng 200 năm trước, vào thời mà còn có hai lý thuyết về ánh sáng: một lý thuyết được Newton ủng hộ cho rằng ánh sáng được tạo thành từ các hạt, còn lý thuyết kia cho rằng nó được tạo thành từ các sóng.

Hiện nay ta biết rằng cả hai lý thuyết trên đều đúng. Theo quan điểm nhị nguyên sóng/hạt của cơ học lượng tử, thì ánh sáng có thể xem như vừa là sóng vừa là hạt. Theo lý thuyết sóng về ánh sáng thì không rõ nó sẽ phản ứng thế nào đối với hấp dẫn. Nhưng nếu ánh sáng được tạo thành từ các hạt thì người ta có thể nghĩ rằng nó sẽ bị tác động bởi hấp dẫn hệt như các viên đạn đại bác, tên lửa và các hành tinh. Ban đầu người ta tưởng rằng ánh sáng truyền với vận tốc lớn vô hạn và như thế thì hấp dẫn không thể nào làm cho nó chậm lại được, nhưng phát minh của Roemer cho thấy ánh sáng truyền với vận tốc hữu hạn, điều đó có nghĩa là hấp dẫn có thể có tác động quan trọng.

Dựa trên giải thuyết đó, một giảng viên của Đại học Cambridge là John Michell đã viết một bài báo in trên tạp chí những văn kiện triết học của Hội Hoàng gia London (Philosophical Transaction of the Royal Society of London) vào năm 1783, trong đó ông chỉ ra rằng một ngôi sao đủ nặng và đặc có thể có trường hấp dẫn mạnh tới mức không cho ánh sáng thoát ra được: bất kỳ ánh sáng nào phát ra từ bề mặt ngôi sao đó cũng đều bị kéo ngược trở lại trước khi nó kịp truyền đi rất xa. Michell cho rằng có thể có một số rất lớn những sao như vậy. Mặc dù chúng ta không thể nhìn thấy những ngôi sao đó bởi vì ánh sáng từ những ngôi sao đó không đến được chúng ta, nhưng chúng ta vẫn cảm thấy được lực hút hấp dẫn của chúng. Những đối tượng đó là cái bây giờ chúng ta gọi là lỗ đen, bởi vì thực tế chúng là những khoảng đen trong vũ trụ.

Một giả thuyết tương tự cũng được một nhà khoa học người Pháp là hầu tước de Laplace đưa ra sau đó ít năm, tất nhiên là độc lập với Michell. Một điều khá lý thú là Laplace chỉ đưa ra giả thuyết này vào lần xuất bản thứ nhất và thứ hai của cuốn sách Hệ thống thế giới, nhưng rồi lại bỏ đi trong những lần xuất bản sau, chắc ông cho rằng đó là một ý tưởng điên rồ. (Cũng như lý thuyết hạt của ánh sáng không được ủng hộ trong suốt thế kỷ 19, và dường như mọi chuyện đều có thể giải thích bằng lý thuyết sóng, nhưng theo lý thuyết sóng thì hoàn toàn không rõ ánh sáng bị hấp dẫn tác động như thế nào).

Thực tế, xem ánh sáng như những viên đạn đại bác trong lý thuyết hấp dẫn của Newton là hoàn toàn không thích hợp bởi vì ánh sáng có vận tốc cố định. (Một viên đạn đại bác khi bắn lên từ mặt đất sẽ bị lực hấp dẫn làm cho chuyển động chậm lại và cuối cùng sẽ dừng lại và rơi xuống, trong khi đó hạt photon vẫn phải tiếp tục bay lên với vận tốc không đổi. Vậy thì lực hấp dẫn của Newton làm thế nào có thể tác động tới ánh sáng?). Phải mãi cho tới khi Einstein đưa ra thuyết tương đối rộng vào năm 1915, ta mới có một lý thuyết nhất quán cho biết hấp dẫn tác động như thế nào đến ánh sáng. Và thậm chí ngay cả khi đó cũng phải mất một thời gian sau người ta mới hiểu được những hệ quả của lý thuyết đối với các sao nặng.

Để hiểu một lỗ đen có thể được hình thành như thế nào, trước hết chúng ta phải hiểu vòng đời của một ngôi sao. Một ngôi sao được hình thành khi một lượng lớn khí (mà chủ yếu là hydro) bắt đầu co lại do lực hút hấp dẫn của chính mình. Và vì khi các khối khí co lại, nên các nguyên tử khí va chạm nhau thường xuyên hơn và ngày càng có vận tốc lớn hơn dẫn tới khối khí nóng lên. Cuối cùng, khối khí sẽ nóng tới mức khi các nguyên tử hydro va chạm nhau chúng sẽ không rời nhau ra nữa mà liên kết với nhau thành nguyên tử heli. Nhiệt giải phóng ra từ phản ứng này - giống như vụ nổ của bom khinh khí - sẽ làm cho ngôi sao phát sáng. Lượng nhiệt đó cũng làm tăng áp suất của khối khí cho tới khi đủ để cân bằng với lực hút hấp dẫn và khối khí ngừng co lại. Điều này cũng hơi giống với trường hợp quả khí cầu, trong đó có sự cân bằng giữa áp suất của không khí bên trong có xu hướng làm cho quả khí cầu phồng ra và sức căng của vỏ cao su có xu hướng làm cho nó co lại. Những ngôi sao sẽ còn ổn định như thế một thời gian dài với nhiệt từ các phản ứng hạt nhân tỏa ra cân bằng với lực hút hấp dẫn. Tuy nhiên, cuối cùng rồi các ngôi sao cũng sẽ dùng hết số khí hydro và các nhiên liệu hạt nhân của nó. Một điều thật nghịch lý là các ngôi sao càng có nhiều nhiên liệu lúc bắt đầu thì sẽ hết càng sớm. Đó là bởi vì ngôi sao càng nặng thì nó phải càng nóng để cân bằng với lực hút hấp dẫn. Mà nó đã càng nóng thì sẽ dùng hết số nhiên liệu của nó càng nhanh. Mặt trời của chúng ta có lẽ còn đủ nhiên liệu cho khoảng gần năm ngàn triệu năm nữa, nhưng những ngôi sao nặng hơn có thể dùng hết nhiên liệu của chúng chỉ trong khoảng một trăm triệu năm, ít hơn tuổi của vũ trụ rất nhiều. Khi một ngôi sao hết nhiên liệu, nó sẽ lạnh đi và co lại. Chỉ cuối những năm 20, người ta mới hiểu được điều gì xảy ra đối với nó khi đó.

Năm 1928 một sinh viên Ấn Độ mới tốt nghiệp đại học tên là Subrahmanyan Chandrasekhar đã dong thuyền tới nước Anh để theo học nhà thiên văn ngài Arthur Eddington, một chuyên gia về thuyết tương đối rộng ở Cambridge. (Theo một số dư luận, thì một nhà báo vào đầu những năm 20 có nói với Eddington, rằng ông ta nghe nói cả thế giới chỉ có ba người hiểu được thuyết tương đối rộng. Eddington im lặng một lát rồi nói: Tôi còn đang cố nghĩ xem người thứ ba là ai). Trong suốt chuyến chu du của mình từ Ấn Độ, Chandrasekhar đã giải quyết được vấn đề: một ngôi sao có thể lớn tới mức nào để khi đã sử dụng hết nhiên liệu vẫn chống chọi được với lực hấp dẫn riêng của nó. Ý tưởng của ông như sau: khi một ngôi sao trở nên nhỏ, các hạt vật chất sẽ ở rất gần nhau, và vì vậy theo nguyên lý loại trừ Pauli, chúng cần phải có vận tốc khác nhau. Điều này làm cho chúng chuyển động ra xa nhau và vì thế có xu hướng làm cho sao giãn nở ra. Do đó một ngôi sao có thể tự duy trì để có một bán kính không đổi bằng cách giữ cân bằng giữa lực hút hấp dẫn và lực đẩy xuất hiện do nguyên lý loại trừ, hệt như ở giai đoạn đầu trong cuộc đời của nó lực hấp dẫn được cân bằng bởi nhiệt.

Tuy nhiên, Chandrasekhar thấy rằng lực đẩy do nguyên lý loại trừ tạo ra có một giới hạn. Lý thuyết tương đối rộng đặt một giới hạn cho sự khác biệt cực đại về vận tốc của các hạt vật chất trong các ngôi sao - đó là vận tốc của ánh sáng. Điều này có nghĩa là khi một ngôi sao đủ đặc, lực đẩy gây bởi nguyên lý loại trừ sẽ nhỏ hơn lực hút hấp dẫn. Chandrasekhar tính ra rằng một ngôi sao lạnh có khối lượng lớn hơn khối lượng mặt trời chừng 1,5 lần sẽ không thể tự chống chọi nổi với lực hấp dẫn riêng của nó. (Khối lượng này hiện nay được gọi là giới hạn Chandrasekhar). Phát minh tương tự cũng được nhà khoa học người Nga Lev Davidovich Landau đưa ra vào cùng thời gian đó.

Điều này có những hệ quả quan trọng đối với số phận tối hậu của các ngôi sao nặng. Nếu khối lượng của một ngôi sao nhỏ hơn giới hạn Chandrasekhar, thì cuối cùng nó cũng có thể ngừng co lại và yên phận ở trạng thái cuối cùng khả dĩ như một sao lùn trắng với bán kính chỉ khoảng vài ngàn dặm và mật độ khoảng vài trăm tấn trong một inch khối. Sao lùn trắng chống đỡ được với lực hút hấp dẫn là bởi lực đẩy do nguyên lý loại trừ sinh ra giữa các electron trong vật chất của nó. Chúng ta đã quan sát được một số khá lớn những sao lùn trắng này. Một trong những sao lùn đầu tiên quan sát được là ngôi sao quay xung quanh sao Thiên Lang (Sirius) - ngôi sao sáng nhất trên bầu trời đêm.

Landau chỉ ra rằng còn có một trạng thái cuối cùng khả dĩ nữa cho các ngôi sao có khối lượng giới hạn cỡ 1 đến 2 lần lớn hơn khối lượng mặt trời nhưng có kích thước còn nhỏ hơn cả các sao lùn trắng nhiều. Các sao này chống chọi được với lực hút hấp dẫn, bởi lực đẩy do nguyên lý loại trừ tạo ra giữa các neutron và proton lớn hơn là giữa các electron. Do đó chúng được gọi là các sao neutron. Chúng có bán kính chỉ cỡ mươi dặm và có mật độ cỡ vài trăm triệu tấn trên một inch khối. Khi sao neutron lần đầu tiên được tiên đoán, người ta không có cách nào quan sát được chúng và thực tế mãi rất lâu về sau người ta cũng không phát hiện được.

Trái lại, những ngôi sao có khối lượng lớn hơn giới hạn Chandrasekhar lại có vấn đề rất lớn đặt ra khi chúng đã dùng hết nhiên liệu. Trong một số trường hợp chúng có thể nổ hoặc điều chỉnh để rút bớt đi một lượng vật chất đủ để làm giảm khối lượng của nó xuống dưới giới hạn và như vậy sẽ tránh được tai họa co lại do hấp dẫn. Tuy nhiên, thật khó lòng tin được rằng điều này luôn luôn xảy ra bất kể ngôi sao lớn tới mức nào. Vả lại, làm sao biết được nó cần phải giảm trọng lượng? Và cho dù mọi ngôi sao đều biết điều chỉnh giảm khối lượng đủ để tránh được quá trình co lại thì điều gì sẽ xảy ra nếu ta thêm khối lượng cho một sao lùn trắng hoặc sao neutron để khối lượng của nó lớn hơn khối lượng giới hạn? Liệu nó có co lại tới mật độ vô hạn không? Eddington đã bị sốc bởi hệ quả đó và ông đã chối bỏ không tin kết quả của Chandrasekhar. Eddington nghĩ rằng đơn giản là không thể có một ngôi sao có thể co lại thành một điểm được. Đó cũng là quan điểm của đa số các nhà khoa học. Chính Einstein cũng viết một bài báo trong đó ông tuyên bố rằng một ngôi sao không thể co lại tới kích thước bằng 0 được! Trước sự chống đối của các nhà khoa học khác, mà đặc biệt là Eddington - vừa là thầy giáo cũ vừa là người có uy tín hàng đầu về cấu trúc các sao, Chandrasekhar đành bỏ phương hướng nghiên cứu đó của mình và chuyển sang nghiên cứu những vấn đề khác trong thiên văn học như sự chuyển động của các cụm sao. Tuy nhiên, khi ông được trao giải thưởng Nobel vào năm 1938, thì ít nhất cũng một phần là do công trình đầu tay của ông về khối lượng giới hạn của các sao lạnh.

Chandrasekhar đã chứng minh được rằng nguyên lý loại trừ không thể ngăn chặn được sự co lại của các ngôi sao có khối lượng lớn hơn giới hạn Chandrasekhar, nhưng vấn đề hiểu được điều gì sẽ xảy ra đối với những sao như vậy theo thuyết tương đối rộng thì phải tới năm 1939 mới được nhà khoa học trẻ người Mỹ là Robert Oppenheimer giải quyết lần đầu tiên. Tuy nhiên, kết quả của ông cho thấy rằng không có một hệ quả quan sát nào có thể phát hiện được bằng các kính thiên văn thời đó. Rồi chiến tranh thế giới thứ 2 xảy ra, và chính Oppenheimer lại cuốn hút vào dự án bom nguyên tử. Sau chiến tranh, vấn đề sự co lại do hấp dẫn bị lãng quên vì đa số các nhà khoa học bắt đầu lao vào các hiện tượng xảy ra trong quy mô nguyên tử và hạt nhân của nó. Tuy nhiên, vào những năm 60 sự quan tâm tới các vấn đề ở thang vĩ mô của thiên văn học và vũ trụ học lại sống dậy vì số lượng cũng như tầm quan sát thiên văn tăng lên rất lớn, do việc áp dụng những công nghệ hiện đại. Công trình của Oppenheimer khi đó lại được phát hiện lại và được mở rộng thêm bởi nhiều người khác.

(còn nữa)

Sưu tầm từ vnexpress
Hình đại diện của thành viên
Zelda
 
Bài viết: 69
Ngày tham gia: 12 Tháng 7 2007, 02:35


Ads are not endorsed by ytuongsangtaovn.com or the staff thereof and visitors should perform their own due diligence on the product or service offered.

Google Ads
 
Đến từ: Google.com

Quay về TT YT&ST về Khoa học - Công nghệ

Ai đang trực tuyến?

Đang xem chuyên mục này: Không có thành viên nào đang trực tuyến296 khách


cron